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Abstract

We have developed a method that recasts the time-propagation of dynamic, mutually interacting quantum-mechan-

ical wavefunctions principally as the time-evolution of many classical particles. Our approach utilizes an approximation

of Feynman path integrals, known as the semiclassical method, to reduce the path integral to only the ‘‘classical’’ paths

connecting the wavefunction at one time step to the next. In exchange for simplifying the path sampling, each classical

path�s contribution gains a determinant term dependent on the path and its environment. Like virtual particles in

quantum field theory, ‘‘virtual classical particles’’ are said to follow these classical paths. Pushing these virtual classical

particles provides the necessary data to evolve quantum wavefunctions in time. Particle-based techniques implemented

on parallel computers can then be used to propagate quantum systems using this alternative method.
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1. Introduction

1.1. Motivation

Microscopic behavior of multiparticle quantum systems is among the most difficult problems to study. A

variety of important physical systems, from the interior of the sun to protein folding and quantum
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chemistry to metals and semiconductor surfaces, are explained only by incorporating the quantum effects

these particles exhibit.

Incorporating quantum effects into the model can be important when the best fidelity to the physics is

required, but addressing quantum phenomena correctly and efficiently is usually nontrivial. Various meth-

ods that address multiparticle quantum behavior exist, varying in complexity and accuracy. Among the
candidates are mean-field methods and their extensions applied to solutions determined using the Schrö-

dinger equation, usually using a finite-difference or spectral method [1–3]. Other methods exist that approx-

imate the particles as Gaussian wavepackets. Some use a ‘‘frozen’’ Gaussians, i.e., those of fixed width [4],

to evolve a wavefunction, while others use Gaussians with parameters that change in response to the system

[5].

1.2. Background of the approach

Our approach is to use a large number of classical paths to compute the evolution of quantum wavefunc-

tions. This idea originated in the birth of quantum mechanics. De Broglie was first to suggest, in his 1924

thesis [6], that matter has wave properties. He proposed that a particle of matter, like light, gains phase as it

travels. Inspired by the similarity between Fermat�s principle and the principle of least action, he identified

matter�s phase with the classical action, the integral of the Lagrangian, along the particle�s path. Reinterpret-

ing Planck�s concept of the quanta and Einstein�s light quantization rule instead for matter, he applied this

idea to create a model of the atom that quantitatively and conceptually explained Bohr�s earlier atomic

model. De Broglie�s model predicted that electrons will only be stable in particular orbits around a nucleus
because the electron�s phase constructively interferes, resonating like a standing wave, on the orbit�s path.
The rules governing this behavior of light and matter came to be known as quantum mechanics.

In 1928, Van Vleck [7] generalized the WKB method [8], which was developed in 1926 to help find

approximate solutions to Schrödinger�s equation [9], to higher dimensions and derived the appearance of

the classical action in a complex exponential, to be later identified as a propagator. This work was among

the earliest to show connections between classical mechanics and quantum mechanics.

Inspired by discoveries of Dirac [10], Feynman published his seminal paper [11] on path integrals in

1948. The evolution of a particle could be modeled as a sum over possible paths whose contributions
are described by a propagator. This paper was significant because it demonstrated explicitly how Feyn-

man�s rigorous form of path integration can be used to derive quantum mechanics, clearly establishing

the technique�s relevance as a method alternative to that of Schrödinger while being a more direct applica-

tion and generalization of de Broglie�s original idea. Also based on Dirac�s work, he showed how, in typical

cases, a sum over these paths through space could be seen to simplify to a sum of classical paths. The famil-

iar arising from the unfamiliar, classical dynamics was seen to arise out of a purely quantum-mechanical

concept, providing a clear connection between classical and quantum theory. The term semiclassical was

later coined for this apparent merge of classical and quantum ideas.
Feynman later built on his path integral work [12]. In 1967, Gutzwiller [13] used Feynman�s path inte-

grals to rederive Van Vleck�s propagator with the addition of phase corrections due to caustics along peri-

odic orbits. These caustics were identified by properties of the eigenvalues of the semiclassical matrix, used

in the determinant factor that expresses focusing in the application of the WKB-like methods to semiclas-

sical paths.

In the early 1990s, Heller and Tomsovic produced a series of articles [14–18] demonstrating accuracy and

stability of quantum-mechanical calculations using long classical paths based on the formula of Van Vleck,

Maslov [19], and Gutzwiller. Some of the techniques built upon the developments of many others [20].
These and related work [21,22] provided evidence, at least for single particle cases, for the computational

viability of using many classical paths to answer specific questions about quantum-mechanical systems,

including those that are chaotic.
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Meanwhile, plasma physics developed significantly in the last half of the 20th century. Plasmas, by def-

inition, are collections of particles under the influence of their mutual electromagnetic fields and following

paths determined by classical mechanics. Buneman and Dawson [23–26] developed the earliest computa-

tional models of plasmas. These systems were one-dimensional ‘‘sheet models’’ of the plasma, and efficient

computational techniques for such models were developed [27]. Later, these models were extended to two
and three dimensions by introducing methods to efficiently solve for electrostatic fields and combining the

use of grid points [28] with the application of a Fast Fourier Transform (FFT) algorithm [29] to solving

Poisson�s equation in Fourier space [30]. These developments made efficient modeling of multidimensional

plasmas possible.

Further improvements in plasma modeling came in step with the evolution of computational hardware.

In particular, Particle-In-Cell (PIC) techniques to model plasmas on parallel computing hardware has seen

great strides in work by Dawson, Decyk, and others [30–36]. Such plasma PIC simulations effectively and

efficiently utilize such computational resources, achieving 90% parallelism and 40% of estimated peak hard-
ware speed. In the 1990s, problems involving up to 2 · 108 particles on 32 · 106 grid points in three dimen-

sions have become possible. These methods are shown to be robust and portable [37,38], and have run

successfully on a wide range of computers (e.g., Cray-90s, T3Ds, T3Es, SGIs, IBM SP2s, and Macintosh

clusters [39]).

Dawson, familiar with the efficiency of these plasma methods to manage particles and calculate their

classical paths, conceived of the idea to apply these techniques to the classical paths in the semiclassical

methods referred to by Heller and Tomsovic [16]. If we assume thousands of classical paths could be used

to evolve a system of one quantum particle, then could millions of classical paths be used to evolve a system
of hundreds, or perhaps thousands, of quantum particles?

If successful, such a code could model scores of phenomena where quantum effects are important and

answer some of the most difficult questions involving quantum mechanics. This modeling method would

allow a detailed investigation of optical properties, ionization potential, conductance, and a host of other

experimentally determined material properties. This tool could be used for the design and physical under-

standing of devices where quantum mechanics is important. Ultimately, with the incorporation of multiple

dimensions, spin phenomena, and electromagnetism, this method would be able to model atoms, chemical

reactions, quantum electronics, solid-state physics, and a multitude of other addressable physical problems.
Cross-pollinated from plasma computation and semiclassical and quantum theory, this idea and its poten-

tial implications are the motivation of this work.

1.3. Other applications of semiclassical methods

Many applications of semiclassical methods and their derivatives have been accomplished. These are

usually directed at particular properties of a quantum system, most commonly the energy spectrum, using

a wide variety of approaches [14,16,18,20,22,40–48]. Some have met with great success, and some are lim-
ited in quality for long time scales. The authors find the reference by Schulman [20] to continue to be an

excellent authority on path integration, while other references [49] reflect more recent work.

Computational application of semiclassical methods most commonly use the Van Vleck–Gutzwiller–

Maslov propagator. For example, based on work by Heller [50], Simotti et al. [51] have developed clever

methods for solving for time-independent eigenstates of two-dimensional billiard-type quantum systems.

They focus on constructing the eigenstate data at the boundary of the system using a superposition of plane

waves determined by segments of periodic classical orbits they locate in the system. Their methods use the

Van Vleck–Gutzwiller–Maslov propagator to determine relevant properties of these periodic orbits. They
then use Green�s theorem to derive the interior of the eigenstate using the boundary information. Other

work on time-dependent propagation of wavefunctions using classical paths and that propagator are rare

and meet with limited success [14].
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The work presented in this article is directly uses classical paths to accurately propagate time-dependent

quantum wavefunctions in a way that diverges from previous work. In this work, we derive a propagator

directly from basic quantum mechanics and Feynman path integrals. This propagator is designed for the

computational time-dependent evolution of dynamic discretized wavefunctions. Its derivation is guided

by the form of the Van Vleck propagator, Gutzwiller�s work, and a section of Chapter 14 of [20]. Otherwise,
this computational method, its development, implementation, study, and application are new and not

found in previous published literature.

This article presents a new way to apply semiclassical methods designed for interacting particles

represented as quantum wavefunctions. Our approach explicitly traces classical paths over time intervals

that are short by comparison to most other uses of semiclassical methods in previous literature. The

method in the article then processes data collected on those paths to fully reconstruct the new

wavefunction at a later time step. New classical paths are created from that new wavefunction. This

approach gives us two features of great interest to us: (1) It allows the environment around the
wavefunction to change in a short period of time. That opens an obvious mechanism for interactions

from other wavefunctions or changing conditions of the system, particularly, a time-dependent effective

potential. (2) Issues raised by undesirable behaviors of the semiclassical determinant, such as

singularities, do not affect this method. That feature, made possible by the short paths, obviates the

need for a Maslov factor or more complex analyses of the system, easing the implementation of this

approach.

We are exploring a different problem space than what has typically been performed with semiclassi-

cal methods. As a result, this use of semiclassical methods makes certain computational and
physical scenarios possible to explore. We make use of (comparatively) ‘‘short’’ classical paths in a

semiclassical context. With this approach, the form of the calculation becomes amenable to implemen-

tation on massively parallel computers using techniques originally developed for classical plasma

simulations.

This article is an exposition of methods used to combine the semiclassical methods for solving quantum-

mechanical problems with computational techniques from plasma PIC simulations for implementation on

parallel computers. It is meant to serve as a guide for future use and development of both the existing quan-

tum PIC code and any future codes using similar techniques. The body of this article provides a theoretical
foundation for such approaches to modeling quantum-mechanical wavefunctions.

1.4. Conventions

The convention used in this presentation uses the Dirac bra-ket notation (jwæ) to represent wavefunc-

tions. The position operator x̂ has an associated complete position basis set {jxæ}, and its dual is the

momentum operator p̂ with its complete momentum basis set {jpæ}. These spaces are related through the

Fourier transform kernel, hxjpi ¼ 1ffiffi
h

p exp 2pixp
h

� �
, where h is Planck�s constant. The time-dependent Schrö-

dinger equation is Ĥ jwi ¼ i�h o
ot jwi, where Ĥ is the Hamiltonian operator and �h � h=2p. This convention

is best expressed in a reference by Townsend [52].
2. Theory

2.1. The approach

To evolve a set of quantum-mechanical wavefunctions, our approach is the following: Each wavefunc-

tion can be evolved using a large number of arbitrary paths. Because of the nature of the contributions

of these paths, the total contribution can be simplified to just those from the classical paths. These
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contributions form the wavefunction at the new time step. Duplicating this procedure for all wavefunctions

updates the entire system to the new time step, allowing the process to repeat.

We begin with the paths used for Feynman path integrals [11]. More commonly used in quantum field

theory, these paths begin at an initial position in the wavefunction at the earlier time step, weave their way

through space, and end at a final position in the wavefunction at the later time step. The contribution of this
path is the wavefunction evaluated at the beginning of the path multiplied by a complex number whose

phase is proportional to the action, the integral of the Lagrangian, along that path. These contributions

are summed to form the new wavefunction.

The technique used to simplify the contributions to the classical paths is called a ‘‘semiclassical approx-

imation’’. Although not exactly identical, it has much in common with WKB techniques and stationary-

phase methods. It involves summing the contributions from paths with the same initial and final positions.

The result is that the paths in the vicinity of the path whose action is an extremum provide the most sig-

nificant contributions. The property of these paths the reader should focus on is their phase. The phase dif-
ference between paths changes as a function of their variation off the extremum path. In part because

Planck�s constant is so small, it tends to be the case that this phase difference increases quickly with vari-

ation. This property is essential to this approximation. Its key is in showing that this rapid variation in

phase causes their contributions to cancel each other. This cancellation dominates over all other effects.

The special path with the extremum action, also found using the Lagrangian-based calculus of variations

of classical mechanics, is called the classical path.

In the following sections, we will show derivations of the semiclassical methods, from their start in basic

quantum mechanics to the complete contributions of the classical paths given by the semiclassical approx-
imation. We show these derivations because of two problems found in the course of this work: (1) Other

than this article, such calculations could not be found together in detail in any other source. (2) Previous

results (such as the Van Vleck–Gutzwiller–Maslov [22] propagator) were found to be inappropriate to this

application. To overcome these difficulties, the authors reconstructed the semiclassical derivations from ba-

sic quantum theory and customized them for this application. In the context of quantum field theory, vir-

tual particles are said to follow the paths forming a Feynman path integral. Likewise, we coin the term

‘‘virtual classical particles’’, which trace the classical paths in this discussion.

2.2. Feynman path integrals

The theoretical basis for the quantum-mechanical methods used here is the Feynman path integral. We

begin with a result of the time-dependent Schrödinger equation, which will allow us to derive a precise

Feynman path integral more quickly. Consider the time evolution of one wavefunction, jwæ, over an inter-

val from t to t + Dt,
jwðt þ DtÞi ¼ exp � iĤDt
�h

� �
jwðtÞi; ð1Þ
where ⁄ is Planck�s constant divided by 2p, and Ĥ is the complete Hamiltonian,
Ĥ ¼
X
l

p̂2l
2m

þ
X
l

V lðx̂lÞ; ð2Þ
where Vl is the effective potential encountered by particle l. Define jwfæ ” jw(t + Dt)æ and jw0æ ” jw(t)æ. We

then divide this time interval into N intervals, each spaced by oti for 0 6 i 6 N where
XN
oti ¼ Dt and oti > 0 8i. ð3Þ
i¼1
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Inserting
1 ¼
Z

jxi hxjdx; ð4Þ
(1) becomes
jwf i ¼
Z YN

j¼0

dxj jxN ihxN j exp � iĤotN
�h

� �
jxN�1i � � � hxij exp � iĤoti

�h

� �
jxi�1i � � � hx1j exp � iĤoti

�h

� �
jx0ihx0jw0i; ð5Þ
an N + 1-dimensional integral. Considering the ith term, we insert
1 ¼
Z

jpii hpijdpi ð6Þ
and obtain
hxij exp � iĤoti
�h

� �
jxi�1i ¼

Z
dpi hxij exp � iĤoti

�h

� �
jpii hpijxi�1i. ð7Þ
After assuming oti is small, substitute the Hamiltonian, and multiply through
hxij exp � iĤoti
�h

� �
jpii � hxijpii �

ioti
�h

hxij
p̂2

2m
jpii þ hxijV ðx̂Þjpii

� �
. ð8Þ
After hitting the kinetic energy term on the momentum ket and the potential energy term on the position

ket, we can reconstitute and factor the exponential
hxij exp � iĤoti
�h

� �
jpii � hxijpii exp � ioti

�h
p2i
2m

þ V ðxiÞ
� �� �

. ð9Þ
Using (9) and hxjpi ¼ 1ffiffi
h

p expðixp=�hÞ, the integrand of (7) becomes
hxijpii exp � ioti
�h

p2i
2m

þ V ðxiÞ
� �� �

hpijxi�1i ¼
1

h
exp

ipiðxi � xi�1Þ
�h

� ioti
�h

p2i
2m

þ V ðxiÞ
� �� �

. ð10Þ
We define _xi � xi�xi�1

oti
, substitute, factor, and completing the square gives
hxij exp � iĤoti
�h

� �
jxi�1i �

Z
dpi

1

h
exp � ioti

�h
ðpi � m _xiÞ2

2m
� m _x2i

2
þ V ðxiÞ

 ! !

¼ exp
ioti
�h

m _x2i
2

� V ðxiÞ
� �� �Z

dpi
1

h
exp � ioti

�h
ðpi � m _xiÞ2

2m

 !
. ð11Þ
We recognize that this is a Gaussian integral with a complex exponential, so we use a convergence factor.

Also, if we define Lðxi; _xiÞ � m _x2i
2
� V ðxiÞ, then
hxij exp � iĤoti
�h

� �
jxi�1i � exp

ioti
�h

Lð _xi; xiÞ
� � ffiffiffiffiffiffiffi

im

hot

r
. ð12Þ
Note that we recognize Lðxi; _xiÞ as the Lagrangian. We obtain
jwf i ¼
Z YN

dxj jxNi
im

hot

� �N=2

exp
i

�h

XN
Lðxi; _xiÞoti

 !
hx0jw0i; ð13Þ
j¼0 i¼1
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which is the path integral from jw0æ to jwfæ using discrete time steps. In some notations [12], a D is used for

the product of differentials. (13) is called a Feynman path integral. (The above derivation is largely similar

to one in Chapter 8 of [52].)

Note that the sum inside the exponential is a time integral of the Lagrangian on a path described by {xi}

(which uniquely determine f _xig). This sum is the action S along this path:
Fig. 1.

determ
S �
XN
i¼1

Lðxi; _xiÞoti. ð14Þ
These paths are diagrammatically shown in Fig. 1.

Note that, at this point, other than the modest requirements used so far, the paths are arbitrary and

unrestricted. The particles that follow these paths are called virtual particles.
2.3. The semiclassical approximation

We now consider variations {oxi} from a special path we label {xcli}, where 1 6 i < N. Further

definition on the properties of {xcli} will be made shortly. We set xi = xcli + oxi with xcli being

independent of xi, for 1 6 i < N. From this point forward, let us set oti = ot = Dt/N. We may apply this

substitution to the path integral in (13), but, for the moment, let us focus on the action:
S ¼
XN
i¼2

mðxcli � xcli�1
þ oxi � oxi�1Þ2

2ot2
� V ðxcli þ oxiÞ

 !
ot

þ mðxcl1 � x0 þ ox1Þ2

2ot2
� V ðxcl1 þ ox1Þ

 !
ot. ð15Þ
We assume {oxi} are small and use a Taylor�s series expansion of V to organize S in powers of oxi.
An arbitrary path from x0 to xN. Paths like this one link contributions from jw(t)æ to jw(t + Dt)æ with a phase difference

ined by the action on this path.
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S ¼ ot
XN
i¼2

mðxcli�xcli�1
Þ2

2ot2 � V ðxcliÞ

þ mðxcli�xcli�1
Þðoxi�oxi�1Þ

ot2 � oV
ox

��
xcli
oxi

þ mðoxi�oxi�1Þ2
2ot2 � o2V

ox2

���
xcli

ox2i
2

�o3V
ox3

���
xcli

ox3i
3!
þ � � �

0
BBBBBBBBB@

1
CCCCCCCCCA

þ ot

mðxcl1�x0Þ2

2ot2 � V ðxcl1Þ

þ mðxcl1�xcli�1
Þox1

ot2 � oV
ox

��
xcl1

ox1

þ mox2
1

2ot2 � o2V
ox2

���
xcl1

ox2
1

2

�o3V
ox3

���
xcl1

ox3
1

3!
þ � � �

0
BBBBBBBBB@

1
CCCCCCCCCA
. ð16Þ
Note that the kinetic energy component only contributes to the lowest three orders.

Let us consider with the terms that are first order in oxi. We now finish the definition of {xcli}: we define

that these values are such that the first order terms in this sum are zero. Since the oxi are independent of
each other, their coefficients must each be zero for this condition to be true. Collecting terms in oxi, for

1 < i < N, implies that
�mðxcliþ1
� xcliÞ

ot2
þ mðxcli � xcli�1

Þ
ot2

� oV
ox

����
xcli

¼ 0. ð17Þ
Arranging the terms into a more familiar form, we have
�oV
ox

����
xcli

¼ m
ðxcliþ1

�xcli Þ
ot � ðxcli�xcli�1

Þ
ot

ot
; ð18Þ
and we recognize that this is the time-centered discrete form of F = ma. Also note that the time-discrete

velocity expressions are time-centered at half steps relative to the time centering of the position variables.

This prescription is consistent with the leap-frog method used to numerically trace classical paths. Hence,

we recognize that the path described by {xcli} is a classical path, justifying its label, cl. Also, it becomes rea-

sonable to name the particles that follow these paths virtual classical particles.

Fig. 2 depicts a classical path accompanied by its associated variations. It is the contributions of a mul-

titude of these classical paths, at a variety of positions and momenta, that construct the final wavefunction
from the initial wavefunction. Also, we make the following distinction: We name ot the classical time step
A classical path is shown, accompanied by variations on that path. The virtual classical particles follow these classical paths,

quantum wavefunctions from one time to the next while providing a mechanism for the wavefunction to interact with its

nment.
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because it is the time that separates steps of the classical path, but Dt is the quantum time step because it is

the interval between evaluations of quantum wavefunctions.
2.4. Initial position and final momentum

We need to consider how to connect the ends of these classical paths to the initial and final wavefunc-

tions. Using the criterion for the term first order in ox1, we have an initial constraint:
�oV
ox

����
xcl1

¼ m
ðxcl2�xcl1 Þ

ot � ðxcl1�x0Þ
ot

ot
. ð19Þ
This equation links the classical path to the integral over x0.

Now we consider the final constraint. Let us insert 1 = �dpf jpfæ Æpfj before the jxNæ in (13), resulting in
jwf i ¼
Z

dpf
YN
j¼1

dxj jpf i
im

hot

� �N=2
1ffiffiffi
h

p exp �
ixNpf
�h

� �
exp

i

�h
S

� �
hx0jw0i. ð20Þ
Performing the above substitution and requiring that the coefficient of the oxN be zero implies the following

constraint:
� Pf

ot
þ mðxclN � xclN�1

Þ
ot2

� oV
ox

����
xclN

¼ 0. ð21Þ
Rearranging gives
�oV
ox

����
xclN

¼
Pf �

mðxclN �xclN�1
Þ

ot

ot
. ð22Þ
(18) gives N � 2 constraints on {xcli}, and (19) and (22) provide the (N � 1)th and Nth constraint, allowing

{xcli} to be uniquely identified by x0 and Pf.

Rewriting jwfæ,
jwf i ¼
Z

dpf

Z
dx0 jpf i

1ffiffiffi
h

p exp �
ixclN pf

�h

� �
exp

i

�h
Scl

� �
Ahx0jw0i; ð23Þ
where
Scl � ot
XN
i¼1

mðxcli � xcli�1
Þ2

2ot2
� V ðxcliÞ

 !
ð24Þ
(using xcl0 ” x0), the zeroth order terms of the action,
A ¼
Z YN

i¼1

dðoxiÞ
im

hot

� �N=2

exp
i

�h
S2

� �
; ð25Þ
an N-dimensional integral, and
S2 ¼ ot
XN
i¼2

mðoxi�oxi�1Þ2
2ot2 � o2V

ox2

���
xcli

ox2i
2

�o3V
ox3

���
xcli

ox3i
3!
þ � � �

0
BB@

1
CCAþ ot

mox2
1

2ot2 � o2V
ox2

���
xcl1

ox2
1

2

�o3V
ox3

���
xcl1

ox3
1

3!
þ � � �

0
BB@

1
CCA; ð26Þ
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the second order terms and higher of the action. A substitution, pf = pclf(p0) (using p0 � m
xcl1�x0

ot ), can be

used to identify these paths using initial conditions only.
2.5. The matrix

(This section largely follows Chapter 14 of [20], with significant points of customization.) Consider S2.

Let us assume that the terms higher than second order in oxi are neglectable. This allows us to write S2 in

the following form:
S2 ¼
m
2ot

gjMi
jgi; ð27Þ
using the Einstein summation convention, where g ” (ox1, ox2, . . . , oxN)
T, M is a tridiagonal N · N

matrix,
M ¼ u� w ¼

2 �1 0 � � � � � � 0

�1 2 �1

0 �1 2 . .
.

..

. . .
. . .

. . .
.

0

..

. . .
.

2 �1

0 � � � � � � 0 �1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

�

w1 0 . . . 0

0 w2
..
.

..

. . .
.

0

0 � � � 0 wN

0
BBBBB@

1
CCCCCA ð28Þ
and
wi �
ot2

2m
o2V
ox2

����
xcli

. ð29Þ
For any matrix M, there exists a unitary transformation U so that M
0
= UMU�1 is diagonal. The basis

set of M 0 maps to the eigenvectors of M. In the new basis set, g0 ¼ Ug ¼ ðox01; ox02; . . . ; ox0N Þ and M 0 is
diagonal:
M 0 ¼

m1 0 � � � 0

0 m2
..
.

..

. . .
.

0

0 � � � 0 mN

0
BBBBB@

1
CCCCCA; ð30Þ
where {mi} are the eigenvalues of M (and M 0). Therefore S2 may be rewritten as
S2 ¼
m
2ot

g0jM 0i
j g

0
i ¼

m
2ot

XN
i¼1

ox02i mi. ð31Þ
This makes A separable:
A ¼
Z YN

j¼1

dðox0jÞ
im

hot

� �N=2

exp
i

�h
m
2ot

XN
i¼1

ox02i mi

 !
¼ im

hot

� �N=2YN
i¼1

Z
dðox0jÞ exp

im

2�hot
miox02i

� �
. ð32Þ
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The integrals are Gaussian, so A simplifies
A ¼ im

hot

� �N=2YN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hot
im � mi

s
¼ im

hot

� �N=2 hot
im

� �N=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQN
i¼1mi

q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðM 0Þ

p ð33Þ
because the determinant of a diagonal matrix is the product of its elements. But since

det(M 0) = det(UMU�1) = det(U)det(M)det(U�1) = det(M),
A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p . ð34Þ
(There are issues concerning when this determinant goes to zero, but that will be addressed in the next

section.)

Then jwfæ becomes
jwf i ¼
Z

dpf

Z
dx0 jpf i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h detðMÞ

p exp �
ixclN pf

�h

� �
exp

i

�h
Scl

� �
hx0jw0i ð35Þ
a two-dimensional integral, with M defined above.

2.6. The determinant

At this point, this discussion substantially diverges from Schulman�s [20] and, to the authors� knowledge,
is not expressed elsewhere. Let us take a closer look at evaluating the determinant of the above matrix. At

first glance, it appears calculating this determinant may be necessary to allocate at least O(N) storage, but

an alternative approach was developed to reduce the storage to O(1). This approach was developed to find a

convenient form to calculate it numerically, but it also shows the likelihood of it causing the determinant to

become singular, which is the results from the ‘‘conjugate points’’ and ‘‘caustics’’ studied at length in other

references [13,16,20–22,49].

Let us consider the determinant of an i · i upper-left minor of M and call it di. For 2 < i < N,
di ¼

2� w1 �1 0 � � � � � � 0

�1 2� w2 �1

0 �1 2� w3
. .
.

..

. . .
. . .

. . .
.

0

..

. . .
.

2� wi�1 �1

0 � � � � � � 0 �1 2� wi

�����������������

�����������������

. ð36Þ
Evaluating this determinant by minors gives
di ¼ ð2� wiÞ

2� w1 �1 0 � � � 0

�1 2� w2 �1 ..
.

0 �1 . .
. . .

.
0

..

. . .
.

2� wi�2 �1

0 � � � 0 �1 2� wi�1

��������������

��������������
� ð�1Þ

2� w1 �1 0 � � � 0

�1 2� w2
. .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

2� wi�2 0

0 � � � 0 0 �1

��������������

��������������
. ð37Þ
But we may recognize that the first determinant is di�1 and the second becomes (�1)di�2. Therefore,
di ¼ ð2� wiÞdi�1 � di�2. ð38Þ
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There are a few special cases: For dN, d1, and d2,
dN ¼ ð1� wiÞdN�1 � dN�2; ð39Þ
d1 ¼ ð2� w1Þ; ð40Þ
d2 ¼ ð2� w2Þd1 � 1; ð41Þ
or (38) may be used to calculate d2 and d1 if we define
d0 � 1 ð42Þ
and
d�1 � 0. ð43Þ
The above expressions provide a complete description, in the form of an iterative method, for eval-

uating the determinant of M. Algorithmically, this evaluation can be performed alongside the evalua-

tion of the classical path using (18) with a minimum of storage space, because wi is only a function of

xcli.
Rearranging (38) gives
ðdi � 2di�1 þ di�2Þ þ widi�1 ¼ 0. ð44Þ

We recognize that this is a time-discrete leap-frog-method form of the following ordinary differential

equation:
d2yðtÞ
dt2

þ wðtÞyðtÞ ¼ 0; ð45Þ
which is the simple harmonic oscillator equation with a time-dependent frequency term, where y(t) = dt and

wðtÞ ¼ wtþ1 ¼ ot2

2m
o2V
ox2

���
xcliþ1

. Interpreting (40) and (41) in this context implies the following initial conditions

on y:
yð0Þ � 1; ð46Þ
_yð0Þ � 1� w1. ð47Þ
The determinant is given by y(N) � y(N � 1).
Let us investigate the likelihood of dN becoming zero. For the sake of argument, let us make w constant.

If w = 0, then y begins at 1 and increases linearly without bound, resulting in a determinant of 1. If w < 0,

which corresponds to a defocusing V, then y will increase without bound exponentially, resulting in a deter-

minant greater than 1.

However, if w > 0, corresponding to a V that focuses, then y will behave as a sine wave with a period of
T ¼ 2pffiffiffiffi
w

p . ð48Þ
Because the initial conditions are non-zero with a positive slope and w is typically less than 1, _y will not

become zero within one-eighth period. Therefore, if we wish to be sure of never encountering a path whose

determinant becomes zero, then
N <
p

4
ffiffiffiffi
w

p ¼ p
4ot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

o2V
ox2

�s
; ð49Þ
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but ot is related to N, so the requirement becomes
Dt <
p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

o2V
ox2

�s
. ð50Þ
Here we have a recommended upper bound on Dt, the time between quantum wavefunction evaluations,

depending on the physics of the system. This is a worst case scenario, when V has a period of sustained

focusing (e.g., in the simple harmonic oscillator). To the authors� knowledge, this prediction (50) is not

made and utilized elsewhere.

For typical physical parameters, however, other issues, such as changes in the effective V due to the

movement of other particles, will require a Dt significantly smaller than required by (50). In practice, the
period is long enough (or o2V

ox2 is small enough) so that dN, at worst, remains within 1% of 1.

2.7. Summary

We now have a method to time-evolve quantum wavefunctions using classical calculations designed for

computation. Here we gather the equations in preparation for implementation. We calculate the following

double integral:
jwðt þ DtÞi ¼
Z

dp0

Z
dx0 jpclf i

opclf
op0

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h detðMÞ
p exp �

ixclN pclf
�h

� �
exp

i

�h
Scl

� �
hx0jwðtÞi. ð51Þ
A large number of classical paths, each uniquely identified by the dummy variables x0 and p0 � m
xcl1�x0

ot , are

traced using
� oV
ox

����
xcli

¼ m
ðxcliþ1

�xcli Þ
ot � ðxcli�xcli�1

Þ
ot

ot
ð18Þ
over N = Dt/ot time steps (using xcl0 ” x0). The action along each path, Scl, is given by
Scl � ot
XN
i¼1

mðxcli � xcli�1
Þ2

2ot2
� V ðxcliÞ

 !
. ð24Þ
Simultaneous with the evaluation of each classical path, det(M) is calculated using an iterative method:
di ¼ ð2� wiÞdi�1 � di�2; ð38Þ

for 1 6 i < N, using initial conditions
d0 � 1 and d�1 � 0; ð42&43Þ

where
wi �
ot2

2m
o2V
ox2

����
xcli

. ð29Þ
The determinant itself is
detðMÞ ¼ ð1� wN ÞdN�1 � dN�2. ð52Þ

Finally, the final classical momentum, pclf, is given by
� oV
ox

����
xclN

¼
pclf �

mðxclN �xclN�1
Þ

ot

ot
. ð53Þ
This completes the time evolution of jwæ.
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3. Implementation

3.1. Numbers

We now need to focus on implementing the methods described in the last section to a numerical tech-
nique appropriate for current computer hardware. This section defines and details the organization of these

semiclassical calculations to evolve quantum wavefunctions. The following presentation introduces meth-

ods and results that are new and have not been located in any previous publication.

The total wavefunction is assumed to be separable into wavefunctions for each particle:
jWi ¼
Y
l

jwli ð54Þ
which is also known as the ‘‘mean-field’’ approximation. This representation neglects quantum statistics

and correlation effects, but it is sufficient at this stage because our focus in this article is on the methods
described the previous section. We represent each wavefunction on a set of grid points in space, thus dis-

cretizing the wavefunctions. Each wl(x) ” Æxjwlæ is a complex number. All wavefunctions are begun with a

complete description of their initial state at t = 0. At any time t, the information contained in all the wl(x)�s
alone is used to update the wavefunctions to the next Dt.

(51) contains a prescription for organizing the classical paths. The obvious solution is to approximate the

integral over x0 with a sum, and assign values of x0 to the grid points used to represent wl(x). However,

what is missing is how to link these paths to the grid point representation of the final wavefunction. Clearly

defining this link is very important for the correct evolution of these discretized wavefunctions. We show
this link by hitting a Æxfj bra on both sides of the equation. (51) becomes
hxf jwðt þ DtÞi ¼
X
p0

X
x0

exp
ixf pclf

�h

� �
exp �

ixclN pclf
�h

� �
expðiScl=�hÞ
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p hx0jwðtÞiDxDp. ð55Þ
We assume the majority of the effects on this value will be due to phase variations between classical paths,

expressed in Scl, therefore we assume
opclf
op0

� 	
varies negligibly from 1. Each wl(xf, t + Dt) acquires the value

of a double sum. Note that the classical paths can weave, and end, in between grid points and at the same

time (55) provides a means to link the initial and final wavefunctions on the same set of grid points. This

feature is not provided in other theoretical studies of the semiclassical method.

One other issue to examine is the range of momenta. The paths of the original path integral essen-

tially explore all of phase space. The conversion to classical paths allows us to ‘‘strategically poll’’

phase space, but the sampling needs to be just as thorough. We have established that x0 will range over

all grid points, which is the entire space of the calculation, so it seems reasonable to say that p0 will

range over all momenta of the calculation. What is the range of possible momenta of this calculation?
The Nyquist theorem states that a maximum frequency can be represented on a series of grid points in

time. This theorem has a simple extension to the greatest momenta that can be represented using grid

points in space.
pmax ¼ h=2Dx; ð56Þ

where Dx is the grid spacing and h is Planck�s constant. Since the representation is complex, negative mo-

menta are allowed, so the range of p0 is �pmax < p0 < pmax. The resolution of the momentum representation
of the wavefunction, wl(p), is the same as that of the position representation. Since we justified the spatial

resolution using wl(x), it seems reasonable that the resolution of the p0 distribution should be at least that of

wl(p). Although this is not a formal argument, the success of this momentum distribution has been seen

empirically.
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3.2. Simulations

We applied the above algorithm to a variety of physical scenarios, testing both the validity of the above

theoretical approach and the robustness of the one-dimensional implemenation. To help establish the meth-

od�s relevance to quantum phenomena, the earliest test cases focused on well-known examples of quantum
mechanics.

Our earliest quantitative analyses of the quantum PIC code�s fidelity to quantum mechanics was per-

formed using a Gaussian wavefunction in free space, the simple harmonic oscillator, and the infinite square

well.

The eigenstates infinite square well are known [52] to be
wnðxÞ / sin
pnx
L

� 	
ð57Þ
with corresponding energy eigenstates:
En ¼
�h2p2n2

2mL2
; ð58Þ
where m is the mass of the particle, L is the width of the well, and n is a positive integer. The simple har-

monic oscillator has an external potential:
V ðxÞ ¼ 1

2
mx2x2; ð59Þ
where x is the potential�s natural angular frequency of oscillation. This leads to the eigenstates:
wnðxÞ / exp �mxx2

2�h

� �
Hn x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mx=�h

p� 	
; ð60Þ
where Hn are the Hermite polynomials, with a regularly spaced energy spectrum:
En ¼ �hxðnþ 1=2Þ; ð61Þ

where n is a nonnegative integer. The time evolution of these eigenstates are described solely by an overall

phase changing at a monotonic rate proportional to the energy eigenvalue of their state:
wnðx; tÞ ¼ wnðx; 0Þ exp � iEnt
�h

� �
. ð62Þ
To the level that the numerics allow, we were able to model the eigenstates of both the infinite square
well and simple harmonic oscillator, including their time evolution. We were also able to model and

measure superpositions of these eigenstates, both generated as explicit superpositions and as arbitrarily se-

lected wavefunctions. Fig. 3 shows eigenstates evolving in an infinite square well, while Fig. 4 shows wave-

functions interacting with a simple harmonic oscillator potential.

For the infinite square well, the initial conditions of different runs were set to the theoretical eigenstates

of the system. At all times, the spatial extent of the states remained as constant, as we could expect. Direct

measurement of the phase at later time steps matched the prediction of (62) and (58) within the time step

resolution after arbitrarily large time step counts. A comparison is shown in Table 1.
Our models using the simple harmonic oscillator system gave a similar degree of consistency with

theory. Fig. 4 shows a run using an arbitrary superposition of the n = 0, n = 1, n = 5, and n = 7 states.

The simulation preserved the superposition of these states sufficient to extract their energies from a

code output. The quality of the energy spectrum increased proportionally to the number of time steps,

as we would expect from increasing the temporal resolution of the data. The data also revealed little



Fig. 3. Example eigenstates of the infinite square well. Frames from runs initialized with the n = 1, 2, 7, and 11 eigenstates are shown,

demonstrating fidelity to theoretical predictions of these eigenstates.

Fig. 4. A simulation of an arbitrary superposition of the n = 0, 1, 5, and 7 eigenstates of the simple harmonic oscillator. The measured

energy spectrum of the system is inset. The positions of the maxima in this energy spectrum agree with that predicted by theory.
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Table 2

Comparison of theory and simulation for the run of a superposition of simple harmonic oscillator eigenstates depicted in Fig. 4,

indicating significant corroboration between our code and quantum mechanics (h = 64, m = 1, Dt = 0.2, x = 1/8)

SHO state jnæ Theory (Energy/�hx) Simulation (Energy/�hx)

n = 0 0.5 0.50 ± 0.02

n = 1 1.5 1.49 ± 0.02

n = 5 5.5 5.48 ± 0.06

n = 7 7.5 7.48 ± 0.06

Table 1

Comparison of theory and simulation predictions of the oscillation period for various eigenstates of the infinite square well depicted in

Fig. 3 (h = 64, m = 1, Dt = 0.2, L = 120)

State jnæ Theory (Period) Simulation (Period)

n = 1 1800 1798 ± 3

n = 2 450 449.6 ± 1.6

n = 7 36.7 36.8 ± 0.4

n = 11 14.88 14.8 ± 0.4

The unit of time is arbitrary.

D.E. Dauger et al. / Journal of Computational Physics 209 (2005) 559–581 575
significant evidence of error such as crosstalk, harmonic distortion, or noise, providing reinforcing evi-

dence of its fidelity to quantum mechanics. The energy values of the peaks measured in the spectrum

were consistent, within the resolution of the spectrum, with the eigenvalues predicted by (61) given the

initial conditions. Table 2 compares the theoretical predictions of the energy peaks with those extracted

from the simulation.

Our free-space modeling focused on the evolution of a wavefunction whose initial state was a simple

Gaussian. Quantum theory predicts that such a system will evolve and expand naturally, as described in

[52], with the width:
Dx ¼ affiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �h2t2

m2a4

s
ð63Þ
as a function of time t. The evolution of this problem is depicted in Fig. 5.

We discovered that precise modeling of the free-space expansion of a Gaussian wavefunction was sur-
prisingly good at revealing subtle errors in our algorithm and implementation. This test case guided much

of our model�s evolution towards greater physical accuracy. The final incarnation of our code generated a

simulation that coincided with the analytical solution within the expected roundoff error of the computa-

tion due to single-precision floating-point. A comparison of a Gaussian�s expansion with the theoretical

prediction (62) is shown in Fig. 6.

3.3. Barrier tunnelling

Our simulations of barrier tunnelling duplicated all qualitative characteristics known in the problem,

most especially the energy-dependent partial transmission of the wavefunction when transmission would

not have been allowed classically. We studied the interaction between a wavefunction and a barrier ideally

expressed as a potential at a constant height V0 in a region of width a while being zero elsewhere. An exam-

ple of our model of this interaction is shown in Fig. 7. Previous analyses of barrier tunnelling using semi-

classical methods [53,54] utilize the Van Vleck–Gutzwiller–Maslov form of the semiclassical propagator on



Fig. 5. Four frames of the evolution of a stationary Gaussian in free space.

Fig. 6. Comparison of theory (line) and simulation (squares) for the width (Dx) of a Gaussian wavefunction expanding in free space as

a function of time. The initial Dx of the Gaussian was four grids, and the simulation was stopped when the wavefunction began to

interact with the edge of simulation space. Neighboring squares are one time step apart, and their size approximates the error expected

due to single-precision (h = 64, m = 1, Dt = 0.2). The QPIC code provided excellent agreement with quantum theory.
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a set of classical paths linking points over arbitrarily long time intervals. The study shown here utilizes

paths, each spanning short time intervals, to connect one quantum wavefunction to the reconstructed

one at the next quantum time step.

The potential used for this calculation approximates the potential barrier of the well-known theoretical

case of quantum tunnelling. Rather than allow discontinuities in the potential and infinite forces at the bar-

rier edges, the computational simulation used steeply sloped edges on its potential barrier. This model
results in forces compatible with the numerics. Consequently, the exact shape of the barrier in the



Fig. 7. Evolution of a Gaussian wavefunction colliding with a square barrier eight grids wide in the center (small rectangle). The

energy of the Gaussian is just enough for a significant amount of transmission and reflection, seen in the last frame.
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computation is unresolved simply because its edges have features smaller than the grid spacing. Because of
the discrepancies between the theoretical and computational versions of the quantum barrier problem,

quantitative comparison becomes challenging to produce. Derived from [52], the transmission probability

of a Gaussian with an initial width r and initial average momentum �hk0 through a potential barrier of width

a and height V0 is



Fig. 8.
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T ðrÞ ¼ 2rffiffiffiffiffiffi
2p

p
Z 1

�1
expð�2r2ðk � k0Þ2Þ

1

1þ mV 0=�h
2

kq

� 	
sin h2ðqaÞ

dk; ð64Þ
where
q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mV 0=�h

2 � k2
q

. ð65Þ
We were able to produce a comparison of (63) and (64) with the code output in Fig. 8.

Fig. 8 shows the probability of transmission through a potential barrier for a quantum wavefunction

whose initial state is a Gaussian moving towards that barrier. The horizontal axis sets the initial width

of the wavefunction, and each group of curves corresponds to a different barrier height. The quantum
PIC code inherited its spatial resolution, the grid spacing, from the plasma PIC code. Theory predicts that

the transmission probability can vary rapidly as a function of barrier width (by as much as 30% for one

grid-spacing change in width). Bearing that and the limited resolution of the barrier size in mind, we should

expect the quantum PIC code�s results to deviate from theory to the extent that the uncertainty in the bar-

rier width results in such deviations in transmission probability. The theoretical predictions plotted in Fig. 8

demonstrate these deviations in transmission probability.

3.4. Beyond textbook quantum mechanics

After establishing its fidelity to quantum mechanics, particularly how single quantum particles interact

with its environment, we applied the quantum PIC code to various multiparticle systems. For the one-

dimensional code, we focused on electrostatic interactions between wavefunctions represented using the

mean-field approximation. We considered multiparticle systems interacting in external potentials that we

knew well, such as the infinite square well, as well as potentials not as well established, such as the one-

dimensional atom, whose potential is proportional to the absolute distance from its center. Although a
The transmission probability of a moving Gaussian wavefunction to tunnel through a potential barrier. The thick lines are the

of quantum PIC simulation, while the thin lines are theoretical predictions using (63) and (64) for slightly different barrier

(a), corresponding to the uncertainty in the dimensions of the potential in the simulation. The three groups of lines correspond

different barrier heights used (pot), and the horizontal axis is the width (sigma) of the initial Gaussian wavefunction. The vertical

the fraction of the wavefunction that is transmitted, and all distances are multiples of the grid spacing, while the units of the

alues are arbitrary (h = 64, m = 1, k0 = 1/2, Dt = 0.1). These results demonstrate the code�s high fidelity to quantum mechanics.



Fig. 9. Four frames of two mutually interacting electrons in a 1D atom potential (V � jxj). While one electron was centered at with the

potential and the other was displaced, the initial state of both electrons were stationary Gaussian wavefunctions. Post-processing of the

data from this simulation led to interesting insights into this physical system.
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detailed analysis of these systems are outside the scope of this article, we can present a system with two-

electrons in a one-dimensional atom in Fig. 9.
Although a detailed presentation of this analysis is reserved for a future article, we applied the quantum

PIC code to systems about which we knew little, and we were able to extract high-quality predictions from

their time evolution not easily addressed using theory. In a future article, we will explore this example of

how the quantum PIC code can be applied as a tool to further our understanding of nontrivial quantum

systems.
4. Conclusion

We have successfully created, implemented, and tested an alternative method to model the dynamic evo-

lution of quantum-mechanical wavefunctions. This method is based on the semiclassical approximation of

Feynman path integrals, allowing the computation to be simplified to the tracing of many classical paths.

This prescription provides a way to utilize plasma PIC implementations designed for parallel computers for

modeling of quantum mechanics. Within the known limits of the numerics, our one-dimensional implemen-

tation of this technique has successfully duplicated all well-established quantum phenomena. This article

lays the foundation for the application of the semiclassical method to simulations of time-dependent, inter-
acting quantum wavefunctions.

Although the implementation discussed above is one-dimensional, the technique is also being applied in

a two-dimensional implementation. Given the phase-space sampling described in Section 3.1, the

pessimistic scaling estimate for this approach would be O(N2) for a system with N grid points. So far we

are seeing scaling almost as low as O(N) using optimization techniques applicable only to higher dimen-

sions, which gives us some confidence in its utility for real-world problems. The work continues at the
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UCLA Plasma Physics group with John Tonge and the authors. Our intention is to incorporate additional

code optimizations into the code and extend physics addressed the code possible with two dimensions, such

as magnetism and nuclear fusion. We intend to address these topics in a subsequent publication.
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